THE STRUCTURE OF THE TYPE-SPECIFIC POLYSACCHARIDE OF Pneumococcus TYPE XIX*

NAOHITO OHNO, TOSHIRO YADOMAE, AND TOSHIO MIYAZAKI**

Department of Microbial Chemistry, Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03 (Japan)

(Received March 26th, 1979; accepted for publication, August 6th, 1979)

ABSTRACT

The structure of the capsular polysaccharide of Type XIX Streptococcus pneumoniae (S-XIX) has been elucidated by $^{\rm I}$ H- and $^{\rm I3}$ C-n.m.r. spectroscopy. Mild hydrolysis of S-XIX with acid yielded a major oligosaccharide, the repeating unit of S-XIX, which was shown to be O-2-acetamido-2-deoxy- β -D-mannopyranosyl-(1 \rightarrow 4)-O- α -D-glucopyranosyl-(1 \rightarrow 2)-L-rhamnose 4"-phosphate. Phosphoric acid forms a diester linkage in the S-XIX molecule, which explains the instability of S-XIX towards acid or alkali. The phosphodiester linkages in S-XIX join HO-1 of α -L-rhamnose and HO-4 of the 2-acetamido-2-deoxy-D-mannopyranosyl residue in the next repeating-unit. Treatment of S-XIX with alkali or alkaline-NaBH₄ produced the repeating units in a lower yield. The proposed structure of S-XIX is

O
||
[-P-O-4-
$$\beta$$
-ManNAc-(1 \rightarrow 4)- α -Glc p -(1 \rightarrow 2)- α -Rha-O-],

INTRODUCTION

An antigenic, pneumococcal type XIX capsular polysaccharide (S-XIX) is composed of repeating units that each contains 2-acetamido-2-deoxy-D-mannose, L-rhamnose, D-glucose, and phosphoric acid. The phosphoric acid residue is involved in a diester linkage¹, so that S-XIX is unstable towards mild acid or alkali. A partial structure of S-XIX, elucidated by chemical and destructive techniques, has been reported¹⁻⁴. It was proposed that S-XIX was composed of a tetrasaccharide repeatingunit, which was prepared by treatments with mild alkali, acid, and then phosphomonoesterase⁴. In addition, S-XIX contains 4-O-(2-acetamido-2-deoxy- β -D-mannopyranosyl)-D-glucose 4'-phosphate, which is an acid-resistant moiety⁵.

We now report on the application of ¹H- and ¹³C-n.m.r. spectroscopy to S-XIX.

^{*}Polysaccharides of Type XIX Pneumococcus, Part V. For Part IV, see ref. 5.

^{**}To whom inquiries should be addressed.

EXPERIMENTAL

Materials and methods. — The pneumococcal type XIX capsular polysaccharide and anti-pneumococcal type XIX horse-serum (anti-Pn XIX) were provided by (the late) Professor J. K. N. Jones, and were purified by the method described previously³.

Ascending p.c. and t.l.c. were performed on Toyo Roshi No. 50 filter papers and Merck 5577 cellulose sheets at room temperature, respectively, with A, ethyl acetate-pyridine-acetic acid-water (10:10:1:6); or B, ethyl acetate-pyridine-acetic acid-water (5:5:1:3). Sugars were detected with alkaline silver nitrate⁶. Radioactive fractions were counted in 7 ml of tT76 emulsion⁷ with a Packard 3330 liquid scintillation counter.

¹³C-N.m.r. spectra were recorded at room temperature on a JEOL-FX 100 spectrometer at 25.0 MHz, in the pulsed Fourier-transform mode with complete proton-decoupling. Chemical shifts are expressed as p.p.m. downfield from the signal (49.8 p.p.m.) for MeOH. ¹H-N.m.r. spectra were recorded at room temperature for solutions in D₂O (internal TSP) with JEOL-PS 100 (continuous wave mode) and JEOL-FX 100 spectrometers (pulsed Fourier-transform mode). Optical rotations were measured for solutions in 0.1-dm semimicro-tubes with a JASCO DIP-4 Digital polarimeter. Phosphomonoesterase treatment⁸, N-acetylation⁹, and determinations of reducing power¹⁰ and neutral sugars¹¹ were performed according to the methods described in the literature.

Preparation of B-Unit¹. — A solution of S-XIX in 0.2m NaOH was diluted with water (1 vol.), kept at 37° for 48 h, and then cooled and neutralised (dilute HCl). The solution was dialysed against distilled water, and the external solution was concentrated and eluted from a column of Dowex-1 (HCOO⁻) resin with a linear gradient of $0\rightarrow0.6m$ NaCl. The main oligosaccharide (B-unit) was eluted at 0.25m NaCl, and the appropriate fractions were concentrated and desalted by using a column (1.5 \times 90 cm) of Sephadex G-10. The B-unit was similar to non-reduced G-25-2 described later.

Treatment of S-XIX with alkaline- $[^3H]$ -NaBH₄. — A solution of S-XIX (7 mg) in water (100 μ l) was treated with 0.2m $[^3H]$ -NaBH₄ (67.1 mCi/mmol, 200 μ l) and 0.2m NaOH (100 μ l) at 37° for 48 h. The reaction was terminated by adding acetone, the mixture was neutralised with NH₄Cl and concentrated to dryness, and the residual borate and 3H_2 O were removed by repeated distillation of MeOH and water from the residue, which was then dissolved in a small quantity of water and desalted by using a column of Bio Gel P-2. The radioactive fraction was re-treated with alkaline $[^3H]$ -NaBH₄ at 48° for 8 h, then treated as described above, and passed through a column of Sephadex G-25.

 α -L-Rhamnopyranosyl phosphate. — This compound (α -L-Rha-1P), synthesised from α -L-rhamnose tetra-acetate by the method of Chatterjee and MacDonald¹² and purified by the method of Ishihara *et al.*¹³ as the cyclohexylammonium salt, had $[\alpha]_D -17^{\circ}$. ¹H-N.m.r. data: δ 5.33 (q, $J_{1,2}$ 1.5, $J_{1,P}$ 8 Hz, H-1).

Rates of hydrolysis of S-XIX, B-Unit, and \alpha-L-Rha-IP. — S-XIX, B-Unit, and

α-L-Rha-1P were treated severally with equal volumes of 20mm HCl at 85°. After the appropriate time, each hydrolysate was cooled, and neutralised with NaOH. The rate of hydrolysis was measured by the Park-Johnson method¹⁰.

Mild hydrolysis of B-Unit with acid was effected as described above. The 45-min and 6-h hydrolysates were examined by t.l.c.

Mild, acid hydrolysate of S-XIX. — S-XIX (30 mg) was hydrolysed in 10mm HCl for 15 min at 85°. The hydrolysate was lyophilised, and the residue was eluted from a column (2×13 cm) of Dowex-1 (HCOO⁻) resin with water followed by a linear gradient (600 ml) of $0\rightarrow0.6$ m NaCl, and then with 2m NaCl (100 ml) and 2m HCl (100 ml). Sugar-containing fractions were collected, and desalted by passing through a column (1.5×140 cm) of Sephadex G-25.

RESULTS

Hydrolysis of S-XIX. — (a) The hydrolysis of S-XIX, B-unit, and α -L-Rha-1P in 10mm HCl at 85° is shown in Fig. 1. Whereas the hydrolysis of α -L-Rha-1P was complete within 30 min, that of the B-unit was relatively slow, but, after 6 h, much of the Rha had been released together with N-deacetylation of ManNAc. The latter phenomena were detectable after 45 min. The hydrolysis of S-XIX proceeded rapidly during the first 15 min and at a lower rate thereafter. As estimated from the results of α -L-Rha-1P and B-unit, the phosphodiester linkages in S-XIX would be hydrolysed within 15 min and the Rha residue in S-XIX would be hydrolysed at a relatively low rate. Therefore, 10mm HCl at 85° for 15 min was used for the subsequent hydrolysis of S-XIX.

(b) Mild hydrolysis. Fig. 2 shows that the mild, acid hydrolysis of S-XIX (30 mg) gave four peaks, of which DF-3 (13.3 mg) was the major oligosaccharide, $[\alpha]_D + 66^\circ$ (c 0.5, water). Gel filtration of DF-1 gave four peaks; DF-1-1 (V_O), DF-1-2 ($V_{Raffinose}$), DF-1-3 ($V_{Maltose}$), and DF-1-4 (V_{Rha}). DF-4 was eluted in the void volume from Sephadex G-25.

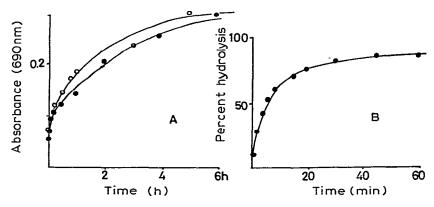


Fig. 1. Hydrolysis of S-XIX (A, — \bullet —), B-unit (A, — \circ —), and α -L-Rha-1P (B) in 10mm HCl at 85°.

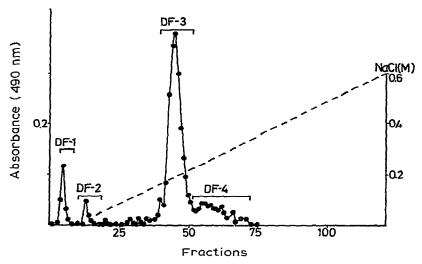


Fig. 2. Fractionation of the mild, acid hydrolysate of S-XIX on Dowex-1 (HCOO-) resin.

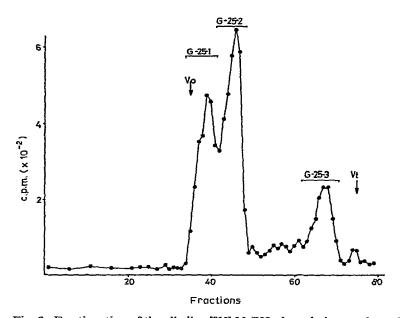


Fig. 3. Fractionation of the alkaline-[3H]-NaBH4 degradation product of S-XIX on Sephadex G-25.

Treatment of S-XIX with alkaline-[³H]-NaBH₄. — After treatment of S-XIX with alkaline-[³H]-NaBH₄, the product was passed through a column of Sephadex G-25 (Fig. 3), and three peaks, G-25-1,2,3, were obtained. G-25-1 contained Rha, rhamnitol (RhaOH), Glc, ManNAc, and phosphoric acid, and gave a precipitin band against anti-Pn XIX. G-25-3 contained no sugars and might reflect an impurity in the [³H]-NaBH₄. G-25-2 contained RhaOH, Glc, ManNAc, and phosphoric acid,

but gave no precipitin band against anti-Pn XIX. G-25-2 ($R_{Glucitol}$ 0.3, solvent A) gave RhaOH on acid hydrolysis, and the product formed after treatment with phosphomonoesterase had $R_{Glucitol}$ 0.82 (solvent A). This value was the same as that of the reduced and phosphomonoesterase-treated B-unit.

Characterisation of the oligosaccharides. — Oligosaccharide DF-3, described above, was composed of Rha, Glc, ManNAc, and phosphoric acid, and its 1 H-n.m.r. spectrum contained, inter alia, signals at δ 2.10 (s, 3 H, NAc of ManNAc) and 1.13 (d, 3 H, J 6 Hz, Me of Rha).

Acid hydrolysis DF-3 yielded the disaccharide unit⁵ PO₄-4- β -ManN-(1 \rightarrow 4)-Glc and Rha. Reduction of DF-3, followed by hydrolysis, liberated RhaOH. From these results, it was concluded that DF-3 was PO₄-4- β -ManNAc-(1 \rightarrow 4)-Glc(1 \rightarrow ?)-Rha.

The ¹³C-n.m.r. data for DF-3 are summarised in Table I. The configuration of Glc was assumed to be α , since the signal (98.6 p.p.m.) was in the appropriate region and up-field of that for C-1 β . Signals for C-1 and C-2 of α - and β -Rha (94.7, 92.4, 81.8, 78.2 p.p.m.) were in good agreement with (1 \rightarrow 2) substitution. Thus, it is reasonable to assume that Glc is attached to position 2 of Rha.

The ¹H-n.m.r. spectra of the minor oligosaccharides, DF-1-2 and DF-4, obtained by mild, acid hydrolysis of S-XIX, showed a pattern similar to that of DF-3. In the spectrum of the other minor product, DF-2, there was no signal for N-acetyl. These results suggest that DF-1-2, DF-2, and DF-4 were de-phosphorylated DF-3, N-deacetylated DF-3, and an incomplete-degradation product of S-XIX, respectively.

Hydrolysis (M HCl, 100° , 3 h) of the B-unit gave PO_4 -4- β -ManN-($1\rightarrow 4$)-Glc and Rha, and all of the phosphoric acid in the B-unit was liberated by phosphomonoesterase. The ¹H- and ¹³C-n.m.r. spectra of the B-unit (Table I) were essentially the same as those of DF-3, except that the B-unit gave several minor signals due to the effect of alkali on the reducing, terminal Rha. These results indicated that S-XIX liberated the same oligosaccharide on treatment with mild acid or alkali.

Characterisation of S-XIX. — The thermal instability of S-XIX limited ¹H-n.m.r. spectroscopy to room temperature. The spectrum showed signals at δ 2.10 (s, 3 H) and 1.32 (d, 3 H) in the ratio 1:1 and attributable to NAc of ManNAc, and Me of Rha, respectively. Three distinct signals were observed in the anomeric region, at δ 5.50, 5.02, and 4.83. The signal at δ 4.83 (J 5 Hz) was assigned to H-1 of the β -linked ManNAc residue, since the chemical shift was similar to that of H-1 in the β -linked ManNAc residue in the disaccharide unit and DF-3. The coupling constant (8 Hz) of the signal at δ 5.50 is similar to that for $J_{1,P}$ of α -L-Rha-1P; this signal was absent from the spectrum of DF-3. The signal at δ 5.50 is assigned to H-1 of phosphorylated Rha.

The ¹³C-n.m.r. data for S-XIX are shown in Table I. Signals for three anomeric carbons were observed. Those at 100.3 and 98.5 p.p.m. were assigned to the β -ManNAc and α -Glc residues, respectively, since these signals were also observed in the spectrum of DF-3. The signal at 94.7 p.p.m. ($J_{C-1,P}$ 7.0 Hz) was assigned to C-1 of the L-Rha-1P moiety. If the configuration of L-Rha-1P in S-XIX is β , then the signals for C-3,4,5 would be expected, from studies with oligosaccharides derived

TABLE I

13C-chemical shifts and carbon-phosphorus couplings (Hz, in parentheses) of s-xix and related substances^a

Atom		A^b	В	С	D	E	F	G
ManNAc C	-1α	93.9	· · · · · · · · · · · · · · · · · · ·					
	β	94.0	100.3		100.3	100.4	100.2	100.1
C-	-2α	54.1						
	β	55.0	53.9		53.7	53.5	54.3	53.9
C-	-3α	69.8						
_	β	73.0	72.9(1.4)¢		72.9 ^a (2.4)	72.9^{d}	72.9	72.6
C-	4α	67.7						
	β	67.5	71.7(5.4)¢		71.4(6.1)	71.3(4.9)	67.5	71.1(5.8
,C-	5α	73.0	76 6(4.0)		76.066.10	55 0/5 A		
_	β	77.3	76.6(4.9)		76.8(6.1)	77.0(7.4)	77.4	76.3(5.0
C-	6α R	61.3	61.1		(0.4	60.5		
		61.3 175.6	01.1		60.6	60.7	60.7	60.7
		176.5	176.4		176.3	176.1	176.3	176.1
ς-CH ₃ α		23.0	170.4		170.3	176.1	176.3	1/6.1
β		22.9	23.0		23.0	23.0	23.0	22.9
	P	24.7	23.0		25.0	23.0	23.0	22.9
Gic C-	1 ~	92.9	92.7		98.6	00 6	00.7	00.5
OIC C-	β	96.7	92. <i>1</i> 96.7		98.6	98.5	98.7	98.5
· C-:	•	72.3	72.3		72.1ª	72.1 ^d	72.2ª	72.1
.	β	75.0	74.9		12.1	72.1	12.24	12.1
C-:		73.6	72.2		72.1 ^a	72.1ª	72.2ª	72.1
	β	76.7	75.1			, 2.,		72.1
C-4	•	70.5	79.6		79.7	79.6	79.6	79.6
	β	70.5	79.9				75.0	15.0
C-:	5α	72.3	70.8		71.2	71.2	71.2	71.2
	β	76.8	75.4					
C-0	5 α	61.6	61.3		61.4	61.4	61.3	61.3
	β	61.7	61.3					
Rha C-1	lα	94.9		96.5(4.9)	92.4	92.4	92.7	94.6(7.0)
	β	94.4			94.7	94.7	94.8	,
C-2	2α	71.7		71.6(8.8)	78.2	78.2	78.4	77.5(8.5)
•	β	72.2			81.8	81.8	81.9	, ,
C-3		70.9		70.6	70.2	70.2	70.3	70.0
	β	73.7			73.2 ^d	72.8 ^d	72.9	
C-4	_	73.1		73.0	72.7ª	72.9 ^d	72.9	72.6
	β	72.7			72.4 ^d	72.3^{d}	72.4^{d}	
C-5	_	69.2		70.2	69.5	69.5	69.5	71.0
	β	72.9		177	72.7 ^d	72.9 ^d	72.9	
C-6		17.8		17.7	17.6	17.7	17.7	17.5
	β	17.8			17.6	17.7	17.7	

^αKey: A, authentic monosaccharide; B, N-acetylated disaccharide unit⁵; C, α-L-Rha-1P; D, DF-3; E, B-unit; F, phosphomonoesterase-treated B-unit; G, S-XIX. ^bData from refs. 20 and 21. ^cCalculated value from the disaccharide unit⁵. ^aAssignments not unequivocal.

from S-XIX, to have chemical shifts of \sim 72.9 p.p.m. The signal at 70.0 p.p.m. was assigned to C-3 of the α -L-Rha-1P residue. The configuration of L-Rha-1P in S-XIX was concluded to be α .

DISCUSSION

Our previous suggestion that S-XIX is built up via a phosphodiester linkage is confirmed by ¹H- and ¹³C-n.m.r. spectroscopy of S-XIX and its mild, acid hydrolysate.

Mild, acid hydrolysis of S-XIX cleaved the phosphodiester without significant hydrolysis of glycosidic linkages and gave a major oligosaccharide, DF-3, which could be the repeating unit. In the 13 C-n.m.r. spectrum of DF-3, the signals for C-1 and C-2 of α - and β -Rha (94.7, 92.4, 81.8, 78.2 p.p.m.) were characteristic of (1 \rightarrow 2) substitution. A similar observation was made for (1 \rightarrow 2)- β -linked mannobiose 14 , which gave two signals for C-1 involved in the inter-sugar linkage, due to the presence of α - and β -forms of the reducing unit. Only one signal was observed for C-1 of Glc of DF-3, but it is possible that one of the signals for C-1 of Glc overlapped with that for C-1 of ManNAc. In the region of the 1 H-n.m.r. spectrum for anomeric protons, the signals were complex and no assignments could be made.

Usui et al.¹⁵ noted that the ¹H-n.m.r. signals for the anomeric protons associated with the inter-sugar linkages of some D-gluco-oligosaccharides overlapped, except for the $(1\rightarrow 2)$ -linked glucobiose. The complexity of the ¹H-n.m.r. spectrum of DF-3 could be due to a similar effect and reflect the presence of an α -Glc- $(1\rightarrow 2)$ -Rha unit in DF-3.

Treatment of S-XIX with alkali or alkaline-NaBH₄ also produced the repeating units (B-unit), but in a lower yield. Thus, the phosphodiester linkages in S-XIX are unstable to both acid and alkali, but more so in acid. The ¹³C-n.m.r. spectrum of the B-unit showed several minor signals, possibly due to changes at the Rha terminal by the alkali treatment. The repeating unit of S-XIX is better prepared by acid treatment.

The phosphodiester linkage in S-XIX, assigned to α -L-Rha-1P on the basis of the ¹³C-n.m.r. data, was also suggested by the $[\alpha]_D$ values: +66° for DF-3, +37° for S-XIX, and -17° for α -L-Rha-1P.

From the data described above, the structure 1 is proposed for S-XIX.

Previous work¹⁻⁴ suggested that S-XIX was composed of L-Rha, D-Glc, D-ManNAc, and phosphoric acid in the proportions ~2:1:1:1. It is now concluded

that the ratios are 1:1:1:1. In the previous papers¹⁻⁴, the component sugars were quantified by using colorimetric methods and paper chromatography. However, S-XIX contains one residue (Rha) which is acid-labile and cleaved by 10mm HCl at 85°. The residual disaccharide unit⁵ is not completely hydrolysed, even by 4m HCl at 100° for 3 h. It is impossible, therefore, to set up hydrolysis conditions suitable for determination of the molar composition of the units in S-XIX.

The mechanism of biosynthesis of phosphodiester-containing polysaccharides, such as teichoic acid, has been widely investigated 16,17 . Partridge et al 18 . suggested that the anomeric configuration of the glycosyl 1-phosphate is the same as that of the corresponding sugar nucleotide 18 . Larm and Lindberg 19 assumed that the L-rhamnosyl phosphate residue in S-XIX had the β -L configuration, because the L-rhamnosyl phosphate was most probably derived from TDP- β -L-rhamnose.

The foregoing data show that the L-rhamnosyl residue in S-XIX has the α configuration. It is possible that another biosynthetic pathway is operative.

ACKNOWLEDGMENTS

The authors thank Mr. Y. Shida and Miss C. Takagai for the ¹³C- and ¹H-n.m.r. spectra measurements, and Mr. M. Hiraiwa for technical assistance.

REFERENCES

- 1 T. MIYAZAKI AND T. YADOMAE, Carbohydr. Res., 16 (1971) 153-159.
- 2 T. MIYAZAKI AND J. K. N. JONES, Chem. Pharm. Bull., 17 (1969) 1531-1533.
- 3 T. MIYAZAKI, T. YADOMAE, AND J. K. N. JONES, J. Biochem. (Tokyo), 68 (1970) 755-758.
- 4 T. MIYAZAKI AND T. YADOMAE, Chem. Pharm. Bull., 18 (1970) 1249-1253.
- 5 T. YADOMAE, N. OHNO, AND T. MIYAZAKI, Carbohydr. Res., 75 (1979) 191-198.
- 6 W. E. TREVELYAN, D. P. PROCTER, AND J. S. HARRISON, Nature (London), 166 (1950) 444-445.
- 7 M. S. PATTERSON AND R. C. GREENE, Anal. Chem., 37 (1965) 854-857.
- 8 N. A. RAO AND C. S. VAIDYANATHAN, Methods Enzymol., 9 (1966) 642-645.
- 9 E. KATZENELLENBOGEN, M. MULCZYK, AND E. ROMANOWSKA, Eur. J. Biochem., 61 (1976) 191-197.
- 10 J. T. PARK AND M. J. JOHNSON, J. Biol. Chem., 181 (1949) 149-151.
- 11 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Anal. Chem., 28 (1956) 350–356.
- 12 A. K. CHATTERJEE AND D. L. MACDONALD, Carbohydr. Res., 6 (1968) 253-255.
- 13 H. ISHIHARA, D. J. MASSARO, AND E. C. HEATH, J. Biol. Chem., 243 (1968) 1103-1109.
- 14 P. A. J. GORIN, Can. J. Chem., 51 (1973) 2105-2109.
- 15 T. Usui, M. Yokoyama, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, Carbohydr. Res., 33 (1974) 105-116.
- 16 J. BADDILEY, Essays Biochem., 8 (1972) 35-77.
- 17 P. A. LAMBERT, I. C. HANCOCK, AND J. BADDILEY, Biochim. Biophys. Acta, 472 (1977) 1-12.
- 18 M. D. PARTRIDGE, A. L. DAVISON, AND J. BADDILEY, Biochem. J., 121 (1971) 695-700.
- 19 O. LARM AND B. LINDBERG, Adv. Carbohydr. Chem. Biochem., 33 (1976) 295-322.
- 20 P. A. J. GORIN AND M. MAZUREK, Can. J. Chem., 53 (1975) 1212-1223.
- D. R. Bundle, H. J. Jennings, and I. C. P. Smith, Can. J. Chem., 51 (1973) 3812–3819.